加入22年中科院考研群 加入22年中科大考研群
2015考研线性代数复习掌握一条主线两种运算三个工具
 

  线性代数,相对高数来说,是比较简单的学科。但是考生的得分不是很理想,这主要是没有掌握住线性代数的特点: 内容抽象;概念多,性质多;内容纵横交错,前后联系紧密,环环相扣,相互渗透。

  一、内容抽象,尤其向量部分最为典型。在现实生活中,我们可以看到一维空间、二维空间甚至是三维空间,但是对于n维空间我们是难以想象的。向量主要研究的就是n维向量,所以这就需要较强的抽象思维和逻辑推理能力。这一点对于侧重于计算能力培养的工科学生来说是一个难点。因此在学习的过程中,对所涉及的基本概念应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其它概念的联系以及它们的作用,一步步达到运用自如的境地。

  二、概念多,性质多,定义多,定理多。例如有关矩阵的,就有相似矩阵、合同矩阵、正定矩阵、正交矩阵、伴随矩阵等概念。在向量这部分,向量组线性相关的性质就10几个。

  三、符号多,运算法则多,有些运算法则与以前的完全不同。如数的运算满足交换律、结合律和消去律;但是矩阵的运算与之有相同的也有不同的,矩阵的运算不满足交换律和消去律,但是满足结合律。所以这些在复习的时候一定要注意区分。

  四、内容纵横交错,前后联系紧密,环环相扣,相互渗透。

  线性代数内容之间的联系是比较紧密的。相对高数来说,它们的联系又是非常隐蔽的。以可逆矩阵为例,n阶矩阵A是可逆的,从行列式的角度有其等价说法,就是n阶矩阵A的行列式不等于0;从矩阵的角度它的等价说法是矩阵A的秩等于阶数n;从向量的角度描述,就是矩阵的行向量组是线性无关的,同时列向量组也是线性无关的,并且任何一个n维列(行)向量都可以由该矩阵的列(行)向量组来线性表示;从特征值的角度描述,就是矩阵A的特征值都是非零的。可逆矩阵这个知识点在线性代数的各章节之间都有其等价说法,所以在复习整个线性代数时,要不断的归纳总结,找出它们之间的联系。也正是由于线性代数具有这样的特点,这就给综合命题创造了条件。

  因此在学习的过程中,对所涉及的概念、性质及定理要理解,同时很多东西还要靠记忆,尤其要注意基本概念、基本方法之间的相互关系,有些问题是相互交错,相互渗透,似螺旋上升,比如矩阵的秩与向量组的秩、线性方程组与向量组的线性组合、线性相关之间的关系。弄清这些关系,一方面可对所涉及的概念通过不断重复而达到加深印象的目的,另一方面也能对问题有进一步的深入理解。

  针对线性代数的这些特点,建议2015年的考生们在复习过程中综合掌握一条主线,两种运算,三个工具。这条主线就是解线性方程组。线性方程组是线性代数的主线,也是考试的重点。在求解线性方程组时主要涉及两种运算:求行列式、矩阵的初等行(列)变换。要把握行列式与矩阵之间的区别和联系,在进行运算的过程中保证计算的准确和速度。那三个工具就是行列式、矩阵、向量,他们贯穿整个线性代数的始终。

  从2013年数学考试情况来看,有很多考生表现出了很高的数学造诣和较强的数学能力,但整体得分较低,说明考生的基础还不够扎实,学习和复习中还存在一些问题。

  首先是推理论证能力没有达到要求,其次是分析问题和解决问题的能力有一定的差距,特别是处理应用题和证明题的能力。考生对常见的试题类型和知识点得分情况较好,对大纲中要求的但在以前考试中出现频率低的试题和内容,特别是一些立意和形式新颖的试题,得分情况就不好,说明考生知识掌握的不够全面,有应试倾向,不利于考生能力的全面发展。老师提醒同学们还要注意综合题目,因为在教学中,各部分内容是单独讲的,综合训练的时间较少,而研究生考试更多是多个知识点联系在一起,要彻底理清各章的关系和各个知识点的联系,综合应用知识解决问题。另外运算能力不过关,会而不全,算而不对的情况在试卷中很常见,线性方程组解错、特征值和特征向量算错等,这也是考生在学习和复习中应着力解决的问题,计算认真是一项重要的任务。

  2015年考研资讯及备考辅导 >> 科大科院考研网考研频道

  我要报班》》》新东方考研辅导课程

  考研热门课程新东方无忧考研课程

  全国 新东方考研课程搜索


(责任编辑:科大科院考研网)  


21复试视频课程查询最新中科大&中科院考研资料

2021年中科大-中科院考研复试辅导班

21复试视频课程 查询最新中科大&中科院考研资料

2021年中科大-中科院考研复试辅导班

上一篇:2015考研政治复习禁忌:死记硬背 教条主义 下一篇:考研数学复习讲策略:宏观战略中观战术微观行动

在线咨询

进入QQ咨询

王老师

微信咨询

杨老师

进入20中科院QQ群

709867297

进入20中科大QQ群

680149146

友情链接

科大科院考研网版权所有 © 2008-2011 皖 ICP 备 11001710号