光学

第三章 干涉装置

3.1 干涉装置概述

按照光的相干性的要求及光源的特点,一列光只有和它自身才是相干的。所 以,干涉装置,就是要设法将一列波分解为相干的几个部分,然后再进行相干叠 加。

将光波进行分解的方法有许多种,第一种,就是在光波场中取两个或几个点, 将这些点作为新的光源,这些新光源可以取在一列波(平面波、球面波等)的波 面上,即等相位面上,但一般情况下,不容易也不必要这样做。由于光场中的任 意一个面都被称作波前,我们可以将这些点所在的面,可能是平面,也可能是曲 面,看作一个波前,只要这个波前处在同一列波上即可。那么,这种将波前分解、 然后获得相干光的装置就被称作"分波前的干涉装置"。杨氏双孔或双缝干涉就是 最典型的分波前的干涉装置。

第二种,是将整个波列分解,例如利用光波在介质分界面的反射和折射,将 入射光分为入射和折射(透射)两部分,这两部分往往不能相遇,因而,需要经 过多次的反射和透射。这种分解方式是将光的能量分为几个部分,而光的能量与 其振幅成正比,所以这种装置被称作"分振幅的干涉装置"。

两种分光的方法相比,不难看出,由于杨氏双孔或双缝干涉分波前的方法只 利用了入射光的一小部分,其余的能量都被遮挡掉了,所以效率是比较低的,虽 然在物理上有较好的意义,但多数情况并不适用。所以实际应用的分波前干涉装 置都是在杨氏装置的基础上改进的。而分振幅的装置,由于有相当大的一部分光 的能量用以产生干涉,因而可以充分利用入射光的能量,所以在实际中有极广泛 的应用。

第四章 干涉装置

3.2 分波前的干涉装置

3.2.1 杨氏干涉

一列光波经过双缝或双孔,分成相干的两列光波,两列相干光在空间 P 处相遇,位相差为 Δ*φ* 产生干涉。

第二列光波分成的两列相干光,在P处的位相差与第一列光波相同,亦为Δφ, 产生与第一列相同的干涉强度分布,与第一列所产生的干涉,进行强度叠加。依 此类推,得到一个干涉花样。

其物理过程为:第一步是相干叠加,第二步是强度叠加(非相干)。

3.2.2 菲涅耳 (Fresnel) 双面镜

如图,两个反射镜 M_1 , M_2 之间有以较小的夹角 ε ,光源S位于两反射镜的 上方。在光源与接收装置(例如接收屏)间有一个不透光的挡板,使得光不能直 接射到接收屏幕上,而只有经过两镜反射的光才能到达屏幕。对于屏幕而言,经 反射镜 M_1 , M_2 射过来的光,就相当于分别是从S的像 S_1 、 S_2 射过来的,而 S_1 、 S_2 是同一个光源的像,因而是相干的。这两列反射光在屏幕上的交叠区域,进行 相干叠加,产生干涉条纹。

因为反射镜的大小总是有限的 ,所以反射光只能照射屏幕上有效大小的区域 , 而两列光的交叠区域还要小 ,因而只能在屏幕上一个较小的区域内产生干涉。

经过简单的几何推算,可以得到,两相光源 S_1 、 S_2 对反射镜交线的张角等于 反射镜之间夹角的两倍,即 2ε 。如果两镜交线到光源S的距离为r,到屏幕的距

2

离为L,则像光源到屏幕的距离为

 $L + r \cos \varepsilon$

而两像光源间的距离为 $2r\sin\varepsilon$

将该装置与杨氏双缝干涉比较,在满足近轴条件时,相当于双缝间距

 $d = 2r\varepsilon$

双缝到接收屏的距离

$$D = L + r$$

所以条纹间距为

$$\Delta x = \frac{L+r}{2r\varepsilon} \lambda \quad (3.2.1)$$

例题 设菲涅尔双面镜的夹角为 20′,缝光源距两镜交线 10cm,接受屏幕与光源的两个像点的连线平行,且与两镜连线间的距离为 210cm,光波长为 600.0nm,问:

(1)干涉条纹的间距为多少?

(2) 如果光源到两镜交线的距离增大一倍,干涉条纹有何变化?

(3)如果光源与两镜交线的距离保持不变,而在横向有所移动,干涉条纹有何变化?

(4)如果要在屏幕上观察到有一顶反衬度的干涉条纹,所允许的缝光源的最大宽度是多少?

解:(1)利用上述式,可得

$$\Delta x = \frac{L+r}{2r\varepsilon} \lambda = \frac{210+10}{2\cdot 10 \cdot \frac{20}{60} \cdot \frac{\pi}{180}} \cdot 600.0nm = 1.13mm$$
(2) $\Delta x' = \frac{L+r'}{2r'\varepsilon} \lambda = \frac{210+20}{2\cdot 20 \cdot \frac{20}{60} \cdot \frac{\pi}{180}} \cdot 600.0nm = 0.59mm$

(3) 光源做横向移动时,由于距离r保持不变,所以干涉条纹没有变化。

第四章 干涉装置

 A_2B_2 。注意, A_1 、 A_2 对应于光源上A; 而 B_1 、 B_2 对应于光源上B。所以, A_1 、

 A_2 是一对相干光源,而 B_1 、 B_2 是另一对, A_1 、 A_2 和 B_1 、 B_2 之间是不相干的。

由图可见,它们的对称轴是错开的,间距为缝光源的宽度,因而各自的干涉条纹 也错开,同一级干涉纹间距也是光源的宽度。当两套干涉纹的同级亮纹错开半个 条纹间距时,由于一套的亮纹恰与另一套的暗纹重叠,则条纹布可分辨。因而光 源的宽度要小于(1)或(2)中条纹间距的一半。

3.2.3 罗埃镜

在平面反射镜的上方有一光源,则光源发出的光,一部分直接到达接收屏, 另一部分经镜面反射后到达接收屏。在它们重叠的区域,产生干涉。光源*S*与它 的几何像*S*',等效于杨氏干涉装置中的双孔或双缝。

与菲涅尔双面镜相比,干涉光中,有一列没有经过镜面反射、而是直接到达 了屏幕。这样一来,就产生了不同的结果。实验研究发现,如果让反射镜的前端 抵住接收屏,则镜与幕的接触点应该是整个装置的对称中心,按照杨氏干涉的原 理,这应该是0级亮条纹的位置。然而,实验表明,这里却出现了暗纹。这当然 不是由于测量上的误差而产生的,而是由物理上的原因。

两光源到上述接触点的光程是相等的,两列波在此本来应该是同相的,而事 实上出现了暗纹,说明两列波的相位相反,相当于世纪的光程相差半个波长。而 这半个波长的光程差只能是由于其中的一列波反射而产生的,因而称其为"斑驳 损失",意思是其中一个波列由于反射而损失了(当然也可以说是额外增加了)半 个波长的光程。半波损失的原因在之后的一节中将得到说明。

3.2.4 菲涅耳 (Fresnel) 双棱镜

将两个完全相同的三棱镜的底面相对,粘合起来,就组成了一个三棱镜。从 光源 *S* 发出的光经棱镜折射后,就相当于是从两个虚像点 *S*₁、 *S*₂ 射过来的,在 重叠区域产生干涉。这种装置被称作菲涅尔双棱镜。实际上,并不需要先做好两 块一模一样的棱镜再将其粘合,而是用一块薄的等腰三棱镜即可。

如果是平行光入射,设棱镜的顶角为 α ,玻璃的折射率为n,由于 sin $i = n \sin \alpha$ 而 α 是小角, sin $i = n \sin \alpha \approx n\alpha$,故折射光的倾角为 $\theta = i - \alpha = (n-1)\alpha$ (3.2.2)

等效于平行光的干涉。

3.2.5 维纳驻波的干涉

入射波 $\psi_1 = A_1 \cos(kz - \omega t)$

设反射波的振幅与入射波相等,表示为

 $Ψ_2 = A_2 \cos(-kz - \omega t + \varphi) = A_2 \cos(kz + \omega t - \varphi)$, iệ $A_1 = A_2$

第四章 干涉装置

合振动 $\psi = \psi_1 + \psi_2 = A \cos(kz - \omega t) + A \cos(kz + \omega t - \varphi)$

$$= 2A\cos(\omega t - \frac{\varphi}{2})\cos(kz - \frac{\varphi}{2})$$

在上述表达式中,时间因子 ωt 与空间因子 kz 分开,这种形式的波动无法在 空间传播,而只能在原位振动,因而形成驻波。实验表明,在 z = 0 处, I = 0, 说明 $\varphi = \pi$,即反射时有半波损失。则

$$\psi = -2A \sin \omega t \sin kz$$
, (3.2.3)

光强
$$I = 4A^2 \sin^2 kz$$
,(3.2.4)
z=0 处, $I=0$, 为极小值。
可以由 $k\Delta z = \frac{2\pi}{\lambda} \Delta z = \pi$ 求得暗纹间隔,即

$$\Delta z = \frac{\pi}{2}$$
 (3.2.5)

板 G 上条纹间隔为

 $\Delta l = \Delta z / \sin \theta = \lambda / 2 \sin \theta$ (3.2.6)

斜入射时,将波矢分解为平行和垂直于 z 的两部分。与 z 平行部分无反射波, 不发生干涉。

3.3 菲涅耳 (Fresnel) 公式

入射光在媒质界面处分为反射和折射两部分,反射波、折射波的情况与介质 的光学常数、入射角、以及入射波振动适量的方向都有关系。这种关系,最初是 菲涅尔表达出来的,因而被称作菲涅尔公式。

菲涅尔公式可以通过在一定的边界条件下求解 Maxwell 方程组得到,是电动 力学的基本关系。菲涅尔公式给出了反射波和折射波的电场强度、磁场强度与入 射波的电场强度、磁场强度间的关系。由于光学仅讨论电场强度,故磁场部分不 予考虑。本书不对推导过程作介绍,只将其结果进行应用。 3.3.1 振动矢量的分解

设入射波从折射率为 n_1 的介质射向折射率为 n_2 的介质,电矢量为 E_1 ,波矢

为 k_1 。反射波、折射波的电矢量和波矢分别记为 E'_1 、 k'_1 , E_2 、 k_2 。将振动矢

6

光学

量分解为垂直于入射面的 S 分量和平行于入射面的 P 分量。P 、 S 和 k 构成右手 系。规定 S 沿+y 方向为正。图示为各个分量的正方向。

3.3.2 Fresnel 公式

在入射点处,反射、折射瞬间电矢量与入射电矢量之间的关系可以用以下关 系表达。

反射光
$$\frac{E'_{s1}}{E_{s1}} = \frac{n_1 \cos i_1 - n_2 \cos i_2}{n_1 \cos i_1 + n_2 \cos i_2} = -\frac{\sin(i_1 - i_2)}{\sin(i_1 + i_2)}$$
 (3.3.1)
 $\frac{E'_{P1}}{E_{P1}} = \frac{n_2 \cos i_1 - n_1 \cos i_2}{n_2 \cos i_1 + n_1 \cos i_2} = \frac{tg(i_1 - i_2)}{tg(i_1 + i_2)}$ (3.3.2)
折射光 $\frac{E_{s2}}{E_{s1}} = \frac{2n_1 \cos i_1}{n_1 \cos i_1 + n_2 \cos i_2} = \frac{2\sin i_2 \cos i_1}{\sin(i_1 + i_2)}$ (3.3.3)
 $\frac{E_{P2}}{E_{P1}} = \frac{2n_1 \cos i_1}{n_2 \cos i_1 + n_1 \cos i_2} = \frac{2\sin i_2 \cos i_1}{\sin(i_1 + i_2)}$ (3.3.4)

Fresnel 公式描述了各个分量的振动矢量之间的关系。对于定态光波,由于可以用复数表示为

$$E=Ae^{iarphi}e^{-i\omega t}$$
,而其角频率 $\,\omega$ 为不变量,因而有 $E\propto Ae^{iarphi}$,而 Ae^{iarphi} 为复振

第四章 干涉装置
幅,所以 Fresnel 公式也是各个分量复振幅之间的关系式。
3.3.3 反射率与透射率从 Fresnel 公式可以直接得到反射率和透射率。(复)振幅反射率
$\tilde{r}_{s} = \frac{E_{s1}'}{E_{s1}} = \frac{n_{1}\cos i_{1} - n_{2}\cos i_{2}}{n_{1}\cos i_{1} + n_{2}\cos i_{2}} = -\frac{\sin(i_{1} - i_{2})}{\sin(i_{1} + i_{2})} (3.3.5)$
$\tilde{r}_{p} = \frac{E'_{P1}}{E_{P1}} = \frac{n_{2}\cos i_{1} - n_{1}\cos i_{2}}{n_{2}\cos i_{1} + n_{1}\cos i_{2}} = \frac{tg(i_{1} - i_{2})}{tg(i_{1} + i_{2})} $ (3.3.6)
(复)振幅透射率
$\tilde{t}_{s} = \frac{E_{s2}}{E_{s1}} = \frac{2n_{1}\cos i_{1}}{n_{1}\cos i_{1} + n_{2}\cos i_{2}} = \frac{2\sin i_{2}\cos i_{1}}{\sin(i_{1} + i_{2})} $ (3.3.7)
$\tilde{t}_{P} = \frac{E_{P2}}{E_{P1}} = \frac{2n_{1}\cos i_{1}}{n_{2}\cos i_{1} + n_{1}\cos i_{2}} = \frac{2\sin i_{2}\cos i_{1}}{\sin(i_{1} + i_{2})\cos(i_{1} - i_{2})} $ (3.3.8)
光强反射率
$R_{s} = r_{s} ^{2}$ (3.3.9), $R_{p} = r_{p} ^{2}$ (3.3.10)
光强透射率
$T_{P} = \frac{n_{2}}{n_{1}} t_{P} ^{2} (3.3.11), T_{S} = \frac{n_{2}}{n_{1}} t_{S} ^{2} (3.3.12)$
光强是能流密度,即能流等于光强与光束截面的乘积。由于反射角等于入射 角,反射光的光束截面保持与入射光相同,所以能流的反射率等于光强的反射率。 而折射角不等于入射角,所以折射光束的截面积与入射光不同。两者间的关
系为 $\frac{S_2}{S_1} = \frac{\cos i_2}{\cos i_1}$,故对于折射光(透射光),能流透射率为

$$\frac{I_{s2}S_2}{I_{s1}S_1} = |t_{s2}|^2 \frac{\cos i_2}{\cos i_1} (3.3.13)$$

$$\frac{I_{p2}S_2}{I_{p1}S_1} = |t_{p2}|^2 \frac{\cos i_2}{\cos i_1} \quad (3.3.14)$$

8

光学

完整版,请访问www.kaoyancas.net 科大科院考研网,专注于中科大、中科院考研

9

第四章 干涉装置

3.3.4 位相关系

如果将Fresnel公式中的振动量用复振幅代替,则反射率、透射率即为反射波、 透射波的复振幅与入射波的复振幅的比值,例如对于反射波的S分量,为

$$r_{S} = \frac{E'_{S1}}{E_{S1}} = \frac{A'_{S1}e^{i\phi_{S1}}}{A_{S1}e^{i\phi_{S1}}} = \frac{A'_{S1}}{A_{S1}}e^{i(\phi'_{S1} - \phi_{S1})} = \frac{A'_{S1}}{A_{S1}}e^{i\Delta\phi'_{S}} \quad (3.3.15)$$

反射波的相位比入射波滞后,按照本书前面的约定, $\varphi'_{s1} > \varphi_{s1}$,相位差 $\Delta \varphi'_{s} = \varphi'_{s1} - \varphi_{s1}$ 应为正值。对于两个复数的比值而言,其幅角便是相应两列波的位相差,即反射波、透射波与入射波间的相位关系为

 $\Delta \varphi(r) = \arg(r)$ (3.3.16), $\Delta \varphi(t) = \arg(t)$ (3.3.17)

从Fresnel公式可以看出,无论何种情况,透射率总是正实数,其幅角为0。说明折射光与入射光在入射、折射的瞬间位相是相同的,即没有因为折射而出现额

光学

外的位相的突变。

但反射波的情况却较为复杂。一方面,反射率可以取正值、也有可能取负值,如果 $i_1 + i_2 = \pi/2$,则 tan $(i_1 + i_2) = \infty$,还会出现 $r_p = 0$,另一方面,光从光密介质向光疏介质入射时,还会出现全反射。以下作具体讨论。

$$r_{s} = -\frac{\sin(i_{1} - i_{2})}{\sin(i_{1} + i_{2})} \begin{cases} > 0, \exists n_{1} > n_{2} \mathbb{H} \\ < 0, \exists n_{1} < n_{2} \mathbb{H} \end{cases}$$
$$r_{p} = \frac{tg(i_{1} - i_{2})}{tg(i_{1} + i_{2})} \begin{cases} \exists n_{1} < n_{2} \& i_{1} + i_{2} < \frac{\pi}{2} \mathbb{H} \\ \exists n_{1} > n_{2} \& i_{1} + i_{2} > \frac{\pi}{2} \mathbb{H} \end{cases}$$
$$0, \exists i_{1} + i_{2} = \frac{\pi}{2} \mathbb{H} \\< 0 \begin{cases} \exists n_{1} < n_{2} \& i_{1} + i_{2} > \frac{\pi}{2} \mathbb{H} \\ \\ \leq 0 \end{cases} \begin{cases} \exists n_{1} < n_{2} \& i_{1} + i_{2} > \frac{\pi}{2} \mathbb{H} \\ \\ \exists n_{1} > n_{2} \& i_{1} + i_{2} < \frac{\pi}{2} \mathbb{H} \end{cases}$$

 $i_1 + i_2 = \frac{\pi}{2}$, $tg(i_1 + i_2) \rightarrow \infty$, $r_p = 0$,反射光中只有S分量,这是一个特殊的入射角,称为Brewster角,记为 i_B 。当入射角 $i_1 = i_B$ 时,由折射定律

$$n_1 \sin i_B = n_2 \sin i_2 = n_2 \cos i_B$$
, $\square i_B = arctg \frac{n_2}{n_1}$ (3.3.18).

第四章 干涉装置

当 $n_1 > n_2$ 时,会出现全反射,此时 $i_2 = \frac{\pi}{2}$ 时,可得 $i_1 = i_c = \arcsin \frac{n_2}{n_1}$

(3.3.19), 是全反射临界角。 $i_C > i_B$ 。

反射波与入射波在反射瞬间的位相差可以用下表说明

介质情况	P分量	S分量	
$n_1 < n_2, i_1 < i_B$	0,位相不变	π ,位相反相	
$n_1 < n_2, i_1 > i_B$	π ,位相反相	π ,位相反相	
$n_1 > n_2, i_1 < i_B$	π ,位相反相	0,位相不变	
$i_B < i_1 < i_C$	0,位相不变	0,位相不变	
$i_1 > i_C$	$0 \sim \pi$	$0 \sim \pi$	

3.3.5 半波损失的解释

光波由光疏介质射向光密介质 , $n_1 < n_2$

1. 掠入射

$$i_1 - i_2 > 0$$
, 且 $\frac{\pi}{2} < i_1 + i_2 < \pi$, $i_1, i_2 \approx \frac{\pi}{2}$, 由 Fresnel 公式,可得
 $\frac{E'_{S1}}{E_{S1}} < 0$, $\frac{E'_{P1}}{E_{P1}} < 0$, 且 $\frac{E'_{S1}}{E_{S1}} \approx \frac{E'_{P1}}{E_{P1}}$, 即 $\frac{E'_{S1}}{E'_{P1}} = \frac{E_{S1}}{E_{P1}}$,反射光中, P,S 分量的方向均在反射瞬间反转。逆着 X 轴方向观察,可见振动方向反转。

 $n_1 < n_2$

2. 垂直入射

 $i_1, i_2 \sim 0$, $\frac{E'_{S1}}{E_{S1}} < 0$, $\frac{E'_{P1}}{E_{P1}} > 0$, $\frac{E'_{S1}}{E_{S1}} \approx -\frac{E'_{P1}}{E_{P1}}$, $\square \frac{E'_{S1}}{E'_{P1}} = -\frac{E_{S1}}{E_{P1}}$

反射光中的 S 分量在反射瞬间反转, P 分量也反转。沿 Z 轴方向观察, 发现 振动反转。

以上两种情况说明由于反射使得光的振动方向有突变,转到相反的方向,相 当于光的位相突然有 π 的改变。对应到光程上,相当于有半个波长的突变。故称 半波损失。

第四章 干涉装置

在薄膜反射和入射的情况,如果上下部分有相同的折射率,则第一列透射光 不会出现半波损失,第二列透射光由于有两次相同的反射,总的效果不需要考虑 半波损失;第一列反射光发生反射的条件与其后的第二列反射光的情况正相反, 两者之间要计入半波损失;但第三列波、第四列波……的情况与第二列相似,都 经过了偶数次相同的反射,因而它们之间不计半波损失。所以在考虑各个反射光 间的光程差时,可以认为第一列波产生了半波损失,或者后面的所有波列都产生 了半波损失。

3.3.6 Stocks 倒逆关系

一列波在介质的分界面上,将分为反射和折射两部分。设界面对于复振幅的 反射率和透射率分别为*ř*,*ť*,入射波复振幅为*Ũ*,则反射波、透射波的复振幅 为

 $\tilde{U}_r = \tilde{U}\tilde{r}$, $\tilde{U}_r = \tilde{U}\tilde{t}$

如果将上述情形反过来,即一列复振幅为 \tilde{U}_r 的波和一列复振幅为 \tilde{U}_r 的波分 别沿着反射波和折射波的路径射过来,从光路可逆性原理,可以判断,总的效果 应该是只有一列沿着原来入射路径的波列 \tilde{U} ,可以由公式表示为

3.4 薄膜干涉

薄膜有上下两个界面,一般情况下,可设薄膜上部介质的折射率为n₁,下部 折射率为n₃,而薄膜本身的折射率为n₂,如图所示。一列光波,在薄膜的上表面 处分为反射和折射两部分,折射部分栽下表面有产生反射和折射,其中反射光到 达上表面又有反射与折射,……在n₁介质中,就有1,2,……一系列光波,介质 n₃中,也有一系列的透射波。由于这些光都是从同一列光分得的,所以是相干的; 这些光是将原入射光的能量(振幅)分为几部分得到的,被称为分振幅的干涉。 从上表面反射的光,可以向任意方向传播,从薄膜内部透射出来的光,同样

从上表面反射的光,可以向任意方向传播,从薄膜内部透射出来的光,同样 也可以向任意方向传播,所以在空间各处都可以产生干涉。采用不同的光路,可 以在不同的区域观察光的干涉。

第四章 干涉装置

3.3.1 等倾干涉

在所有的反射光和透射光中,相互平行的光将汇聚在无穷远处,则它们的干 涉也将在无穷远处发生。如果在薄膜上面置一凸透镜,在该透镜的焦平面处置一 观察屏,则凡是在屏上能够相遇(即汇聚)而进行叠加的光,都是平行射向透镜 的,或者说,这些进行干涉的光相对于透镜的光轴有相同的倾角,因而这种干涉 被称作"等倾干涉"。

1.干涉级

如图,在入射点 A,出现反射和折射,产生第一列反射波;折射进入薄膜的 光波在下表面 B 处反射,又经过上表面 C 处射出,这是第二列反射波。如果过 C 店做一个与光束垂直的平面 CD,则 CD 上各点到汇聚点 P 是等光程的,因而这两 列反射波在 P 店的光程差为 $n_2(\overline{AB} + \overline{BC}) - n_1\overline{AD}$,而

 $\overline{AB} + \overline{BC} = 2h/\cos i_2$, $\overline{AD} = \overline{AC}\sin i_1 = 2htgi_2\sin i_1$, 所以

$$\delta = 2h(\frac{n_2}{\cos i_2} - n_1 t g_2 i \sin_1) = \frac{2h}{\cos i_2} (n_2 - n_2 \sin^2 i_2)$$

$$=\frac{2n_2h}{\cos i_2}(1-\sin^2 i_2)=2n_2h\cos i_2=2h\sqrt{n_2^2-n_1^2\sin^2 i_1} \quad (3.3.1)$$

这两列波之间要计入半波损失
$$\lambda/2$$
,则
 $\delta' = 2n_2h\cos i_2 \pm \lambda/2 = 2h\sqrt{n_2^2 - n_1^2\sin^2 i_1} \pm \lambda/2$ (3.3.2)
 $2h\sqrt{n_2^2 - n_1^2\sin^2 i_1}$ 或 $2n_2h\cos i_2 = (2j+1)\frac{\lambda}{2}$ (3.3.3),干涉相长

;

 $2h\sqrt{n^2_2 - n^2_1 \sin^2 i_1}$ 或 $2n_2h\cos i_2 = j\lambda$,(3.3.4)干涉相消。

由上式可以看出,等倾干涉中,入射角相同,则光程差相同,对应同一干涉 级,也就是同一级干涉条纹。

由于条纹的分布特征只与射向透镜的光的方向(倾角)有关。因而,由透镜 的对称性,可以看出干涉条纹是一系列的同心圆环,在焦平面上为同心圆,也可 以说定域于无穷远处。

 2.干涉条纹与光源大小的关系 点光源:

扩展光源:两个不同的发光点,发出球面波,其中凡是具有相同倾角的光, 都将汇聚到屏上的同一点,而又具有相等的光程差,故干涉条纹的形态与只有一 个点光源是一样的。那么,对于扩展光源,条纹的形态也与只有一个点光源相同。 而且,由于扩展光源的强度比电光源大,所以,实际上使用的都是扩展光源,

薄膜的上表面,有不止两列反射波;同样,也有许多列透射波从薄膜的下表 面射出,他们之间会有怎样的干涉呢?我们将进行如下的讨论。

射入射波的振幅为 A, 从上表面入射时, 即从折射率为 n₁ 向折射率为 n₂ 的介 质入射时, 对振幅的反射率为 r, 透射率为 t; 而从薄膜的内部向上表面入射、即 从折射率为 n₂ 向折射率为的 n₁ 介质入射时, 对振幅的反射率和透射率分别为 r' 和 t'; 在薄膜的下表面, 从内向外入射时, 即从折射率为 n₂ 向折射率为的 n₃ 介质入

光学

射时,对振幅的反射率和透射率分别为 r_2 和 t_2 。如图所示。一般情况下,往往有 $n_1 = n_3$,例如空气中的透明薄膜,则 $r' = r_2$, $t' = t_2$ 。由 Stocks 倒逆关系,r' = -r, $tt' = 1 - r^2$ 。将反射波依次记作 1、2、……;而透射光记作1'、2'、……可以计算出各列反射波的振幅为

$$\begin{split} A_{1} &= Ar (3.3.5) \\ A_{2} &= Atrt' = Artt' = Ar(1-r^{2}) \\ A_{3} &= Ar^{3}tt' = Ar^{3}(1-r^{2}) \\ A_{4} &= Ar^{5}(1-r^{2}) \\ &\dots \\ &\Pi 通式表示 , n > 1 \text{ 时 }, \text{ f } A_{n} = Ar^{2n-3}(1-r^{2}) (3.3.6) \\ &\text{而透射波的振幅为} \end{split}$$

$$A_1' = Att' = A(1-r^2)$$

$$A'_{2} = Ar^{2}(1-r^{2})$$

 $A'_{3} = Ar^{4}(1-r^{2})$

通式为 $A'_n = Ar^{2(n-1)}(1-r^2)$ (3.3.7)

对透明介质, $r \ll 1$, 很小;因而,反射波中 $A_1 \approx A_2 \gg A_3 \gg A_4 \gg \cdots$;所 以只有第一列和第二列反射波之间有显著的干涉,其它的波列,由于强度太小而 对总的干涉效果无甚贡献,可以忽略。而透射波中, $A'_1 >> A'_2 >> A'_3 >> \dots$, 因而不能产生有效的干涉效应,即透射光的干涉条纹可见度极小。因而,对于透 明的薄膜,只需要考虑第1、第2列反射光的干涉即可。

当然,如果薄膜的反射率较高,即*r*≈<1,则要计算所有的透射波间的干涉, 对于反射波亦然。这一问题我们将在后面处理。

第四章 干涉装置

4.等倾干涉条纹的特征
(1) 中央条纹
亮条纹应满足
$$2h\sqrt{n_2^2 - n_1^2 \sin^2 i_1} = (2j+1)\frac{\lambda}{2}$$
 (3.3.7)
或 $2n_2h\cos i_2 = (2j+1)\frac{\lambda}{2}$ 。 (3.3.8)
中央条纹对应的角度 $i_1 = 0$,即 $i_1 = i_2 = 0$,垂直入射, $\cos i_2 = 0$, j 取最大
值,即中央条纹的干涉级数最大,由 n_2h 决定。

(2) 薄膜厚度的影响

对同一*j*,当*h*增大时,*i*₂增大,相应地,*i*₁增大,即圆环膨胀;*h*减小,*i*₁减小,圆环收缩。薄膜厚度对干涉

(3) 条纹间距 相邻两条纹间的角距离记作 Δi ,即j改变引所起的角度的改变量,因为

$$2nh\sin i_2\Delta i_2 = -\lambda$$

$$\Delta i_2 = -\frac{\lambda}{2nh\sin i_2} (3.3.9)$$

厚度 h 大,条纹的间隔小。即薄膜厚度增加时,条纹将变得比较密。

(4) 条纹角宽度

亮条纹并非一条几何上的亮线,而是有一定的强度分布的宽带。由于干涉条 纹的强度分布公式为

$$I(i) = A_1^2 + A_2^2 + 2A_1A_2 \cos \Delta \varphi$$

$$\overline{m} A_1 = Ar$$
, $A_2 = Atrt' = Artt' = Ar(1-r^2)$

$$\Delta \varphi = \frac{2\pi}{\lambda} \delta' = \frac{4\pi}{\lambda} n_2 h \cos i_2 \pm \pi , (3.3.10) 故有$$

$$I(i) = Ar^{2}[1 + (1 - r^{2})^{2} + 2(1 - r^{2})\cos(\frac{4\pi}{\lambda}n_{2}h\cos i_{2})]$$

可以将两相邻暗纹间的角度差(角距离)作为亮条纹的角宽度,即

由于
$$2n_2h\cos i_2 = (2j+1)\frac{\lambda}{2}$$
, $2n_2h\cos(i_2+\Delta i_2) = j\lambda$

故 $2n_2h\sin i_2\Delta i_2 = \lambda/2$

光学

即 $\Delta i_2 = \lambda / 4n_2 h \sin i_2$ (3.3.11)

厚膜条纹较密集;同时,中心处,角度小, Δi_2 大,即条纹中心疏,周围密。

3.3.2 等厚干涉

如果薄膜上下两表面不平行,而是有一夹角α,如图所示。则在光波相交处 均有干涉,整个空间都有干涉条纹,是非定域的。

如图,由于薄膜两表面的夹角往往很小,所以,两列反射波的光程差 $n_2(\overrightarrow{AB}+\overrightarrow{BC}) - n_1\overrightarrow{DC}$ 的计算,可以直接引用等倾干涉的结果。则亮条纹的条件为

$$2h\sqrt{n^2_2 - n^2_1 \sin^2 i_1}$$
或 $2n_2h\cos i_2 = (2j+1)\frac{\lambda}{2}$,干涉相长;

暗条纹的条件为

 $2h\sqrt{n^2_2 - n^2_1 \sin^2 i_1}$ 或 $2n_2h\cos i_2 = j\lambda$,干涉相消。

使入射垂直入射,则上表面的第 1、第 2 列反射波将重合,因而能进行相干 叠加。如果仅仅观察薄膜上表面处的干涉,则两列波间的光程差为

2n₂h,如果计入半波损失则在薄膜的上表面,两列波的相位差为

$$\Delta \varphi = \frac{4\pi}{\lambda} n_2 h \pm \pi$$

第四章 干涉装置

则亮条纹出现的条件是 $2n_2h = (2j+1)\frac{\lambda}{2}$;(3.3.11)

暗条纹出现的条件是 $2n_{2}h = j\lambda$ 。(3.3.12)

由于同一级(条)亮纹出现在包膜厚度相等的地方,因而这种干涉被称作"等 厚干涉",定域于薄膜上表面。

对于楔形薄膜,相邻两根亮条纹间的厚度差为 $\Delta h = \lambda/2n_2$ (3.3.13)。如果 楔角为 α ,在表面上,亮条纹的间距为 $\Delta l = \Delta h/\sin \alpha = \lambda/2n_2 \sin \alpha$ (3.3.14)

在尖端处,只有半波损失,反射光永远是暗纹。透射光是亮纹。

如果薄膜的上下表面都是平整的,等厚条纹应该是相互平行的等间隔直条纹, 但实际上,我们看到的却往往是弯曲的弧形条纹,其原因可以用下图说明。观察 者处于薄膜正上方时,进入其瞳孔的光的角度是不同的,中央部分的光沿竖直方 向进入,而两侧的光只有倾斜才能进入。即,中央部分的光,其角度 $i_1 = 0$,条 纹 满足 $2n_2h = (2j+1)\frac{\lambda}{2}$; 两侧的光,由于 $i_1 \neq 0$,所以应该采用公式 $2n_2h\cos i_2 = (2j+1)\frac{\lambda}{2}$,由于 $i_2 \neq 0$, $\cos i_2 < 1$,对于同一干涉级, $(2j+1)\frac{\lambda}{2}$ 是不变的,而中央部分, $2n_2h = (2j+1)\frac{\lambda}{2}$,那么在两侧同一厚度的光,则 $2n_2h\cos i_2 < (2j+1)\frac{\lambda}{2}$,不满足亮条纹出现的条件,只有在膜增加一定厚度的地 方,才有 $2n_2(h+\Delta h)\cos i_2 = (2j+1)\frac{\lambda}{2}$,而且,越靠边, i_2 越大, Δh 就越大, 所以,看到的条纹是向膜厚的地方弯曲。

P1, P2 点入射角比中央 O 点大, 故 h 必须增才能使得满足干涉相长条件, 故条纹向厚的一端弯曲。

可用于检测表面平整,确定凸凹。

如图,如果观察到如右图所示弯曲的干涉纹,则可判断待测表面的中央部分 有一凸起,理由如下;

直纹说明表面是平整的,设此处厚度为h,若中央有一凸起,则厚度小于h, 不满足亮纹的条件,而同级亮纹只能出现在厚度为h的地方,向右端移动一段距 离,则会有厚度恰等于h的地方,则亮纹在这里出现,这一部分的条纹因而向楔 形的后部弯曲。条纹弯曲的区域对应于凸起的区域,而条纹弯曲的程度对应于凸 起的高度。

3.5 分振幅的干涉装置

3.5.1 Michelson 干涉仪1、干涉仪的结构与原理

第四章 干涉装置

G₁:分光板,G₂:补偿板。G₁与M₁,M₂成 45°角。入射波在分光板的涂膜处 分为两部分,分别射向M₁、M₂。被M₁,M₂反射后,沿原路返回到分光板的涂膜 上。由M₁反射的波透过涂膜,在图中记为1;而右M₂反射的波被涂膜反射,在图 中记为2。1、2 两列波进行相干叠加,产生干涉条纹。补偿板与分光板有相同的 材料制成,形状也完全一样,只是没有涂膜。则1、2 两列波都各自经涂膜透射一 次、经玻璃板透射三次、被反光镜反射一次,只是在空气中经过的路程不同,因 而光程差就是由于两反射镜到涂膜层的距离不同而造成的。经过由于两列光波所 经过的路径上,在分光板处,以及两反射镜处,均有相同的反射,所以半波损失 的情况相同。

 M_2 相对于涂膜有一个镜像 M'_2 , 光波 2 相当于从 M'_2 反射过来的, 而 M'_2 与

M₁构成了一个空气膜,所以 Michelson 干涉仪就相当于空气膜的干涉。两列波的

光程差就是 M'_2 与 M_1 间距的 2 倍。 M_1 与 M'_2 间或平行、或不平行,就能产生等

光学

倾或等厚干涉此时,由于 $n_1 = n_2$, $i_1 = i_2$, 所以亮条纹产生的条件为

 $2h\cos i = j\lambda$ (3.3.14)

用于精确测量长度。

2.条纹的形状

(1) $M_1 / / M_2'$, 即 $M_1 \perp M_2$, 为等倾干涉

同心圆环,圆心在视场中央。

(2) M_1 不平行于 M'_2 ,为等厚干涉。此时,看以看到下图所示的干涉条纹,条

纹的形状与 M_1 、 M'_2 间的距离有关。

3. 傅里叶变换光谱仪

在 Michelson 干涉仪中,可以让进行干涉的两束光的强度相等,即它们的振幅相等,记为 *A*(*k*),如果此时两列波的光程差位δ,则它们的干涉强度可表示为

$$\begin{split} I(k) &= 2A^{2}(k)[1 + \cos \Delta \varphi(k)] = 2A^{2}(k)[1 + \cos(k\delta)] \\ &= 0 \\ &= 0 \\ &= 0 \\ \int_{0}^{\infty} I(k)dk = \int_{0}^{\infty} 2A^{2}(k)[1 + \cos(k\delta)]dk \\ &= \int_{0}^{\infty} 2A^{2}(k)dk + \int_{0}^{\infty} 2A^{2}(k)\cos(k\delta)dk = I_{0} + \int_{0}^{\infty} 2A^{2}(k)\cos(k\delta)dk \end{split}$$

第四章 干涉装置

$$= I_0 + \int_0^\infty i(k)\cos(k\delta)dk , 即有\int_0^\infty i(k)\cos(k\delta)dk = I(\delta) - I_0$$

 I_0 与波长无关,是光程差为零时的光强;而后面的积分是一个傅里叶余弦变换的表达式。其逆变换为

 $i(k) = \frac{2}{\pi} \int_0^\infty [I(\delta) - I_0] \cos k \delta d \delta$ (3.3.15)。在 Michelson 干涉仪 中,光程差 δ 即为两反光镜之间距离的两倍,即 2h,所以,只要在一系列不同的 位置上记录到衍射光强,即可通过傅里叶变换得到光源的光谱分布。由此可以得 到光源的光谱分布 i(k) 或 $i(\lambda)$ 。

3.5.2 马赫——曾特干涉仪

如图,采用两个反射镜 M_1 、 M_2 ,以及两个分束镜 BS_1 、 BS_2 酒可以组成一

光学

种分振幅的反射装置,称作马赫——曾特干涉仪。在其中的一条光路中,可以置入样品,如受力的透明介质、气体或则等离子体等,则可以通过测量干涉条纹的变化获得样品的信息。该装置近年来更是被用于量子密钥通信。 3.5.3 干涉滤波片

利用薄膜干涉相长或干涉相消原理,可以对某些波长增透或增反。如在玻璃 板上镀一层薄膜,则入射光中满足干涉相长的波长被反射,其它的波长则由于干 涉而减弱,可以只让特定波长的光被反射,起到滤光的作用。也可以在光学仪器 的镜头表面镀(涂)膜,使得透射光由于干涉而得到增强。现在使用的照相机、 望远镜、显微镜,由于都采用了较复杂的透镜组,透镜较多,每个透镜的表面都 会反射一部分光,因而造成的光能量损失比较严重。在每一个镜头的表面镀上增 透膜,可以大大降低入射光能量的损失。

由于仅有一层增透或增反膜还不能充分起作用,所以,现在往往采用多层膜。 将光学常数(折射率)不同的材料按一定的次序和厚度镀在镜头表面,其效果比 仅有一层薄膜要好得多。

3.5.4 牛顿环(圈)

在一玻璃平板上放一平凸透镜,则两者之间就形成了一层空气薄膜。从上方

第四章 干涉装置

垂直入射的光,由于分别被空气膜的上下两个表面反射,于是就产生了干涉。在 空气膜的上表面或下表面观察,由于空气膜的形状取决于透镜球面的形状,这是 一种等厚干涉装置。可以判断,干涉条纹的形状是一系列的同心圆环。这些圆环 被称作牛顿环。

观察反射光在空气膜上表面的干涉,一列在球面(玻璃—空气界面)被反射, 没有半波损失;而另一列在平面(空气玻璃界面)被反射,有半波损失。于是亮 条纹产生的条件为

 $\delta = 2h \pm \lambda/2 = j\lambda$, $\square 2h = j\lambda \pm \lambda/2$

设球面半径为 R,在空气膜厚度为 h 处干涉条纹的半径为 r,则有

 $h(2R-h) = r^2$, $2Rh-h^2 = r^2$

由于R >> h, $h = r^2/2R$

Newton Ring 半径为 $r_i = \sqrt{(j+1/2)\lambda R}$ j=0,1,2.....(3.3.16)

对于透射光在空气膜下表面的干涉,一列直接透过,另一列在平面和球面间 反射后透过,由于两次反射,无半波损失。

 $\delta = 2h = j\lambda$

Newton Ring 半径 $r_j = \sqrt{j\lambda R}$ j=0, 1, 2, 3.....(3.3.17) 可测球面透镜曲率半径 R。

3.6 多光束干涉——Fabry-Perot 干涉仪

3.6.1 干涉装置

在薄膜干涉装置中,如果膜的两个表面对光的反射率很高,则各列反射光的 强度相差不是很大,这时,除了第1、第2列之外,其它的反射波列对干涉的贡 献就不可忽略;同样,所有的透射波列之见,也会产生明显的干涉。因而,在这 种情况下,就必须计算多光束的干涉。

实用的多光束干涉装置通常如图所示。其中*G*₁、*G*₂是两块用光学玻璃或石 英晶体制成的直角梯形,相对的两个表面彼此严格平行,并镀有高反射率薄膜。 这样,在其中就形成了一个具有高反射率表面的平行空气薄膜。经过准直的平行 光从一端射入,在另一端就可以得到相干的平行波列。这种装置称作 Fabry-Perot

28

光学

干涉仪。干涉仪中,两反射面 G_1 、 G_2 的间距是可以进行精确地调整的。如果 G_1 、 G_2 的间距是固定不变的,则被称作 Fabry-Perot 标准具,用来对长度进行精确的标定。

3.6.2 光强分布

等倾干涉,条纹为同心圆环。各列反射光和透射光的振幅为

 $A_1 = Ar$

$$A_{2} = Atrt' = Artt' = Ar(1 - r^{2})$$
$$A_{3} = Ar^{3}tt' = Ar^{3}(1 - r^{2})$$
$$A_{4} = Ar^{5}(1 - r^{2})$$
.....

第四章 干涉装置

用通式表示,n > 1时,有 $A_n = Ar^{2n-3}(1-r^2)$ $A_1' = Att' = A(1-r^2)$ $A_2' = Ar^2(1-r^2)$ $A_3' = Ar^4(1-r^2)$ 通式为 $A_n' = Ar^{2(n-1)}(1-r^2)$

除第一列反射光要计入额外光程(±^{*礼*})外,其余相邻两列反射光间有相同 光程差,相邻两列透射光也有相同光程差和位相差,为

$$\delta = 2h\sqrt{n_2^2 - n_1^2 \sin^2 i_1} , (3.3.18) 相位差为 \Delta \varphi = k\delta = \frac{2\pi}{\lambda} \delta (3.3.19)$$

设在入射点处的位相为 φ_0 ,则第一列反射光的位相为 $\varphi_0 + \pi$,第 n 列反射 光的位相为 $\varphi_0 + (n-1)\Delta \varphi$,即有

$$\begin{split} \widetilde{U}_{1} &= A_{1}e^{i(\pi+\varphi_{0})} = Are^{i(\pi+\varphi_{0})} = A\rho^{1/2}e^{i(\varphi_{0}+\pi)} (3.3.20) \\ \\ & \Downarrow n = Ar^{2n-3}(1-r^{2})e^{i[\varphi_{0}+(n-1)\Delta\varphi]} = A\rho^{n-3/2}(1-\rho)e^{i[\varphi_{0}+(n-1)\Delta\varphi]} (3.3.21) \\ \\ & \Pi \mp \underline{\Phi} \ln \\ \\ & \widetilde{U}_{R} = A\rho^{1/2}e^{i(\varphi_{0}+\pi)} + \sum_{n=2}^{N} A\rho^{n-3/2}(1-\rho)e^{i[\varphi_{0}+(n-1)\Delta\varphi]} \\ &= -A\rho^{1/2}e^{i\varphi_{0}} + A\rho^{-1/2}(1-\rho)e^{i\varphi_{0}}\sum_{n=2}^{N}\rho^{n-1}e^{i(n-1)\Delta\varphi} \\ &= -A\rho^{1/2}e^{i\varphi_{0}} + A\rho^{-1/2}(1-\rho)e^{i\varphi_{0}}\sum_{n=1}^{N-1}\rho^{n}e^{in\Delta\varphi} \\ &= -A\rho^{1/2}e^{i\varphi_{0}} + A\rho^{-1/2}(1-\rho)e^{i\varphi_{0}}\frac{\rho e^{i\Delta\varphi}[1-\rho^{N-1}e^{(N-1)\Delta\varphi]}}{1-\rho e^{i\Delta\varphi}} \end{split}$$

)

$$\begin{split} \stackrel{N \to \infty}{=} & A\rho^{1/2} e^{i\varphi_0} \left[-1 + \frac{(1-\rho)e^{i\Delta\varphi}}{1-\rho e^{i\Delta\varphi}} \right] = A\rho^{1/2} e^{i\varphi_0} \left(\frac{-1+e^{i\Delta\varphi}}{1-\rho e^{i\Delta\varphi}} \right) \\ I_R = & \tilde{U}_R \tilde{U}_R^* = A^2 \rho \left(\frac{-1+e^{i\Delta\varphi}}{1-\rho e^{i\Delta\varphi}} \right) \left(\frac{-1+e^{-i\Delta\varphi}}{1-\rho e^{-i\Delta\varphi}} \right) \\ = & A^2 \rho \frac{1-e^{i\Delta\varphi} - e^{-i\Delta\varphi} + 1}{1-\rho (e^{i\Delta\varphi} - e^{-i\Delta\varphi}) + \rho^2} = \frac{2A^2 \rho (1-\cos\Delta\varphi)}{1-2\rho \cos\Delta\varphi + \rho^2} \\ \overline{m} 1 - \cos\Delta\varphi = 1 - 1 + 2\sin^2 \frac{\Delta\varphi}{2} = 2\sin^2 \frac{\Delta\varphi}{2} \\ 1 - 2\rho \cos\Delta\varphi + \rho^2 = (1-\rho)^2 + 2\rho - 2\rho \cos\Delta\varphi \\ = & (1-\rho)^2 + 2\rho \left(1 - 1 + 2\sin^2 \frac{\Delta\varphi}{2} \right) = (1-\rho)^2 + 4\rho \sin^2 \frac{\Delta\varphi}{2} \end{split}$$

所以
$$I_R = I_0 \frac{4\rho \sin^2 \frac{\Delta \varphi}{2}}{(1-\rho)^2 + 4\rho \sin^2 \frac{\Delta \varphi}{2}} = \frac{I_0}{1 + \frac{(1-\rho)^2}{4\rho \sin^2 \frac{\Delta \varphi}{2}}}$$
(3.3.22)

对于透射光,振幅可表示为

$$A'_{n} = Ar^{2(n-1)}(1-r^{2}) = A(1-r^{2})r^{-2}r^{2n} = A_{0}\rho^{n-1}$$

 $A_0 = A(1-r^2)$, $\rho = r^2$ 对光强的反射率。

第 n 列透射光的复振幅为 $\tilde{U}'_n = A_0 \rho^{n-1} e^{i[\varphi_0 + (n-1)\Delta \varphi]}$,其中 φ'_0 为第一列透射波的位相。

相干叠加

$$\begin{split} \tilde{U}_{T} &= \sum_{n=1}^{N} A_{0} \rho^{n-1} e^{i[\varphi_{0}^{\prime} + (n-1)\Delta\varphi]} = A_{0} \rho e^{i\varphi_{0}^{\prime}} \sum_{n=0}^{N-1} \rho^{n} e^{in\Delta\varphi} \\ &= A_{0} e^{i\varphi_{0}^{\prime}} \frac{1 - \rho^{N} e^{iN\Delta\varphi}}{1 - \rho e^{i\Delta\varphi}} \ , \ \stackrel{\text{\tiny $\underline{\square}$}}{=} N \to \infty \text{ I} \overline{\textbf{p}} \ , \end{split}$$

第四章 干涉装置

${ ilde U}_T = {A_0 e^{i arphi_0'} \over 1 - ho e^{i \Delta arphi}}$
透射光强
$I_{T} = \tilde{U}\tilde{U}^{*} = \frac{A_{0}^{2}}{(1 - \rho e^{i\Delta\varphi})(1 - \rho e^{-i\Delta\varphi})}$
$=\frac{A_{0}^{2}}{1-\rho e^{i\Delta \varphi}-\rho e^{-i\Delta \varphi}+\rho^{2}}=\frac{A_{0}^{2}}{1-2\rho \cos \Delta \varphi+\rho^{2}}$
$\overline{III} A_0^2 = A^2 (1-\rho)^2 = I_0 (1-\rho)^2$
$I_{T} = \frac{I_{0}}{1 + \frac{4\rho \sin^{2} \frac{\Delta \varphi}{2}}{(1 - \rho)^{2}}} (3.3.23)$
$ \begin{array}{c} 1.0 \\ \gamma_{-} \\ 0.5 \\ 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

反射光
$$I_R = I_0 - I_T = \frac{I_0}{1 + \frac{(1-\rho)^2}{4\rho \sin^2 \frac{\Delta \varphi}{2}}}$$

在不同的反射率下,所得到的透射光强分布如图所示。将该图反过来,就是

光学

反射光的强度分布。可以看出,当反射率较高时,透射光是一系列明亮细锐的同心圆环,而反射光的亮环较宽,暗环细锐。反射、透射的干涉花样是互补的。 3.6.3 光波场特性

为了衡量干涉条纹的细锐程度,通常采用半值宽度这一参量。

半值宽度:光强降为峰值一半时峰的宽度。如图所示。即在峰值 2j 附近, 当 $\Delta \varphi$ 的数值改变 ± $\varepsilon/2$ 时, $I_T/I_0 = 1/2$, 可得

第四章 干涉装置

条纹角分布

$$\Delta \varphi_j = \frac{2\pi}{\lambda} \delta = 4\pi n_2 h \cos i_2 / \lambda \quad , \quad d(\Delta \varphi_j) = -\frac{4\pi n_2 h \sin i_2}{\lambda} di_2$$

当 $d(\Delta \varphi_i) = \varepsilon$ 时, $di_2 = \Delta i_i$, 条纹半角宽度

$$\Delta i_{j} = \frac{\lambda \varepsilon}{4\pi n_{2} h \sin i_{2}} = \frac{\lambda}{2\pi n_{2} h \sin i_{2}} \frac{1-\rho}{\sqrt{\rho}}$$

ho大,h长, Δi 小,条纹锐。中央条纹宽,周围细锐。

而普通的薄膜干涉,即双光束干涉时, $\Delta i_2 = \lambda/4n_2h\sin i_2$,可见 F—P 条 纹锐得多。即出射的条纹发散角很小。保证了激光的平行性。

2、 频率(波长)分布只有特殊的波长满足极大条件,即,

$$\lambda_j = \frac{1}{j} 2n_2 h \cos i_2$$

在 λ_j 附近,虽经干涉,并未全部相消,设可见的波长范围为 $\Delta\lambda_j$,则有

$$d(\Delta \varphi_i) = -(4\pi n_2 h \cos i_2 / \lambda_i^2) d\lambda_i = \varepsilon$$
,可得

$$\Delta \lambda_j = \frac{\lambda^2}{2\pi n_2 h \cos i_2} \frac{1-\rho}{\sqrt{\rho}} = \frac{\lambda}{j\pi} \frac{1-\rho}{\sqrt{\rho}}$$

h大, ρ 大时, Δi_2 小。可用于选模。保证了激光的单色性。

3、 光谱的精细结构分析

 $2nh\cos i_i = j\lambda$, $2nh\cos(i_i + \delta i) = j(\lambda + \delta\lambda)$

 $-2nh\sin i_j di_j = jd\lambda$, $\square \delta i = \frac{j}{2nh\sin i_j}\delta\lambda$

为波长差为 δλ 的同一级亮条纹的角距离。与薄膜干涉相同,但由于条纹锐得 多,所以靠得很近的条纹也可以分辨清楚。

当 $\delta i = \Delta i$ 时,即相邻两条纹的角距离等于每一个条纹的半角宽度时,为可以分辨的极限。此为 Taylor **判据。**

第四章 干涉装置

$$A = \frac{\lambda}{\delta\lambda} = \frac{\sqrt{\rho}}{1-\rho} j\pi$$